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1 Sufficient Statistics

1.1 Recap: differential identities for exponential families

Last time, we were talking about exponential families P = {Pθ : θ ∈ Θ} with densities

pθ(x) = eη(θ)
>T (x)−B(θ)h(x).

In natural parameters, we have

pη(x) = eη
>T (x)−A(η)h(x).

Last time, we proved some differential identities by starting with the equation

eA(η) =

∫
eη

>T (x)h(x) dµ(x)

and differentiating with respect to ηj . We saw that

∇A(η) = Eη[T (X)], ∇2A(η) = Varη(T (X)).

In general, we have

e−A(η)
∂k1+···+ks

∂k1η1 · · · ∂ksηs
(eA(η)) = Eη[T k11 · · ·T

ks
s ].

This is saying that eA(η+u)−A(η) is the moment generating function of T :

∂

∂uj
eA(η+u)−A(η)|u=0 =

(
∂

∂ηj
eA(η)

)
· e−A(η).

If we take logs, we get that A(η + u) − A(η) is the cumulant generating function of
T (X).1

1We have been calling A(η) the CGF, but technically that is only the case where η = 0.
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Here is another calculation of the MGF for T (X) in an exponential family:

MT (X)
η (u) = Eη[eu

>T (X)]

=

∫
eu

>T eη
>T−A(η)h dµ

= e−A(η)eA(u+η).

1.2 Sufficiency

Our motivation is going to be the example of coin flipping.

Example 1.1. Suppose X1, . . . , Xn
iid∼ Ber(θ), so our data is X ∼

∏
i θ
xi(1 − θ)xi on

{0, 1}n. Instead of observing the whole sequence, we can observe a summary statistic
T (X) =

∑
iXi ∼ Binom(n, θ) = θt(1 − θ)n−t

(
n
t

)
on {0, 1 . . . , n} which only records the

total number of heads. This is a lossy compression of the data (X1, . . . , Xn) 7→ T (X). Why
can we justify this?

We can think of the information in (X1, . . . , Xn) as coming in two parts: the first part
is T (X), which is the part relevant to estimating θ, and the second part is the ordering,
which doesn’t depend on θ. The reason that T (X) is the important part for estimating θ
is that T (X) is the only part that depends on θ.

Definition 1.1. Let P = {Pθ : θ ∈ Θ} be a statistical model for data X. T (X) is
sufficient for the model P if Pθ(X | T ) does not depend on θ.

Example 1.2. Continuing our coin flipping example,

Pθ(X = x | T = t) =
Pθ(X = x, T = t)

Pθ(T = t)

=
θ
∑
i xi(1− θ)n−

∑
i xi

θt(1− θ)n−t
(
n
t

) 1{
∑
i xi=t}

=
1(
n
t

)1{∑i xi=t}.

The interpretation is that we can think of Nature as generating the data in 2 steps:

1. Generate T (X) ∼ Pθ(T (X)), dependent on θ.

2. Generate X ∼ P (X | T ), not dependent on θ.

Sufficiency principle: If T (X) is sufficient, then any statistical procedure should depend
on the data X only through T .
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Why should we believe in this sufficiency principle? Suppose we generate X̃ ∼ P(X | T ).

θ T (X) X

X̃

nature

us

Then X̃
d
= X, so any estimator gives δ(X̃)

d
= δ(X). So we should always be fine using

T (X), since we don’t really lose any information by using it. Later, we will see that using
sufficient statistics can reduce the loss we incur in estimation.

1.3 Factorization theorem for sufficient statistics

Theorem 1.1 (Fisher-Neyman). Let P = {Pθ : θ ∈ Θ} be a statistical model with densities
pθ(x) with respect to a common dominating measure µ. Then T is sufficient for P if and
only if there exist nonnegative functions gθ, h such that pθ(x) = gθ(T (x))h(x) for µ-a.e. x.

Here is a “physics proof.” For a careful proof, check Keener.

Proof. (⇐= ):

pθ(x | T = t) = 1{T (x)=t} ·
gθ(t)h(x)∫

T (z)=t gθ(t)h(z) dµ(z)

= 1{T (x)=t} ·
h(x)∫

T (z)=t h(z) dµ(z)
.

( =⇒ ): Take

gθ(t) =

∫
T (x)=t

pθ(x) dµ(x) = Pθ(T (X) = t),

h(x) =
pθ0(x)∫

T (z)=T (x) pθ0(z) dµ(z)
= Pθ0(X = x | T (X) = T (x)).

for any fixed θ0 ∈ Θ. Then

gθ(T (x))h(x) = P(T (X) = T (x))Pθ(X = x | T (X) = T (x))

= pθ(x).

Example 1.3. For exponential families,

pθ(x) = eη(θ)
>T (x)−B(θ)︸ ︷︷ ︸
gθ(T (x))

h(x)︸︷︷︸
h(x)

,

so T is sufficient for θ.
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Example 1.4. Suppose X1, . . . , Xn
iid∼ P

(1)
θ for any model P(1) = {P (1)

θ : θ ∈ Θ} on X ⊆ R.

P
(1)
θ is invariant to permuting X = (X1, . . . , Xn). The order statistics X(1) ≤ X(2) ≤
· · · ≤ X(n) are defined by X(k) = the k-th smallest value (counting repeats). For example,
if X = (1, 3, 3,−1), then X(1) = −1, X(2) = 1, X(3) = 3, X(4) = 3.

IfX1, . . . , Xn
iid∼ P

(1)
θ is any univariate model P(1), then the order statistics are sufficient.

For a more general X , we can say the empirical distribution

P̂n(·) =
1

n

n∑
i=1

δXi(·)

is sufficient.

1.4 Minimal sufficiency

Example 1.5. Consider X1, . . . , Xn
iid∼ N(θ, 1). The following statistics are sufficient:

T (X) =
∑
i

Xi, X =
1

n

∑
i

Xi,

S(X) = (X(1), . . . , X(n)), X = (X1, . . . , Xn).

It seems like the latter two statistics have more information than T (X) or X. These are
all sufficient statistics (and in fact the data itself is always sufficient), so what should we
do with regards to the sufficiency principle? The idea is to find sufficient statistics with
the least amount of information, i.e. the ones that cannot recover the others.

Here is a diagram that expresses which statistics have more information than others:

X

S(X)

T (X) X

Next time, we will talk about minimal sufficient statistics, which have minimal infor-
mation while remaining sufficient.
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